5.1 Introduction to z-Scores
- Raw Scores : original, unchanged scores that are direct result of mesurement
- a score by itself does not necessarily provide much information about its position within a distribution
- Z-Scores tell exactly where the original scores are located.
// We transform X values into z-scores.. z-Score makes raw scores more meaningful..
Interpreting a Raw Score
English | Mathematics | Psychology | |
X | 80 | 65 | 75 |
- ▲ Raw score
English | Mathematics | Psychology | |
X | 80 | 65 | 75 |
μ (mean) | 85 | 55 | 60 |
σ (SD) | 10 | 5 | 15 |
- Raw scores cannot be compared directly because they come from distributions with different means and different standard deviations
- // 날 것의 점수인 과목별 점수를 똑같이 비교할 수 없음. 다른 평균과 다른 표준편차를 가진 분포를 가졌기 때문이다.
- Transforming the scores on each test to a common scale with a specified mean and standard deviation, we can compare the scores
- //각각의 과목시험의 점수들을 지정된 평균과 표준 편차가 있는 공통 척도로 변환하여 점수를 비교할 수 있습니다.
Standard Scores (Z scores)
Z-score: convert the original scores to new scores with a mean of 0 and a standard deviation of 1 for easy comparison among different scores from different distributions.
mean = 0, SD = 1
Definition:
The sign of the z-score (+ or -) signifies whether the score is above the mean (positive) or below the mean (negative). The numerical value of the z-score specifies the distance from the mean by counting the number of standard deviations between X and μ .
z-점수의 부호(+ 또는 -)는 점수가 평균보다 높은지(양수) 평균보다 낮은지(음수)를 나타냅니다.
z-점수의 숫자값은 X 와 μ 사이의 표준편차 수을 계산하여 평균으로부터의 거리를 지정합니다.
Advantage of z-score
A z-score specifies the precise location of each X value within a distribution.
- the mean is zero
- Positive/negative z scores => above/below the average
- the standard deviation is 1
- Shape of the distribution do not change
//위에는 PPT 내용..
Z-score formula
Z-scores
English | Mathematics | Psychology | |
X | 80 | 65 | 75 |
μ (mean) | 85 | 55 | 60 |
σ (SD) | 10 | 5 | 15 |
z | -0.5 | +2 | +1 |
- 'z-score= +2' means : the score is located above the mean by exactly 2 standard deviations.
- 'z-score= -0.5' means : the score is located below the mean by exactly 1/2 standard deviations.
Z-scores Example1
In a certain city the mean price of a quart of milk is 63 cents and the standard deviation is 8 cents. The average price of a package of bacon is $1.80 and the standard deviation is 15 cents. If we pay $0.89 for a quart of milk and $2.19 for a package of bacon at a 24-hour convenience store, which is relatively more expensive?
a quart of milk
mean =0.63 SD=0.08
a package of bacon
mean=1.80 SD=0.15
0.89 for milk
2.19 for bacon
z-score for milk = 0.26/0.08= 3.25
z-score for bacon = 0.39/0.15=2.6
milk is relatively more expensive
Disadvantage of z-score
It is difficult to explain to someone who is not well versed in statistics
통계에 정통하지 않은 사람에게 설명하기가 어렵다.
Ex Z score of 0 doesn’t mean that you received a test score of zero, but your score is equal to the average of the class
Z 점수가 0이라는 것은 시험 점수가 0이라는 것을 의미하지는 않지만 점수는 수업 평균과 같다.
T scores
- T scores: a set of scores with a mean of 50 and a standard deviation of 10
- Formula: T = 10Z + 50
- Each raw score is converted to a Z score, each Z score is multiplied by 10 and 50 is added to each resulting score
- Since the mean of T score is 50, easy to tell a score is above average, or below average
- Standard deviation is 10, so easy to tell how many standard deviation s above or below average a score is
English | Mathematics | Psychology | |
X | 80 | 65 | 75 |
μ (mean) | 85 | 55 | 60 |
σ (SD) | 10 | 5 | 15 |
z | -0.5 | +2 | +1 |
T | 45 | 70 | 60 |
SAT Scores
- SAT & GRE: Standardized Test
- Formula
- SAT=100Z + 500
- Scores are transformed to a scale with a mean of 500 and a standard deviation of 100
- Ex) SAT score of 642
- 642 = 100Z+500
- Z=1.42
▼ 이해에 도움이 될 유용한 설명 자료
https://drhongdatanote.tistory.com/50?category=648822
[개념 통계 14] 정규분포와 표준정규분포 그리고 Z-score
안녕하세요. 홍박사입니다. 이전 포스팅에서는 확률변수와 확률함수에 대해서 다루었습니다. 확률변수란 특정확률로 나타나는 어떠한 사건에 수치를 부여한 변수라고 할 수 있고, 확률 함수란
drhongdatanote.tistory.com
▼ z-table 과 t-table 보는 법
https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=21thjojo&logNo=110181047644
표준정규분포표 보는법
상용로그표와 마찬가지로 표준정규분포표 또한 읽을 줄 모른다면 그냥 간지나는 숫자 꾸러미에 지나지 않는...
blog.naver.com
https://math100.tistory.com/43
t분포표 보는 법
이전 글에서 t분포는 확률을 구할 때 사용하는 분포가 아니라, 나중에 신뢰구간이랑 가설검정을 할 때 사용하는 분포라고 했었는데, 나중에 신뢰구간이랑 가설검정을 하려면 그래프의 x축 좌표
math100.tistory.com
'2021-가을학기 > 심리통계분석 I' 카테고리의 다른 글
[Chapter 7] Probability and Samples: the Distribution of Sample Means (0) | 2021.11.08 |
---|---|
[Chapter 6] Probability (1) | 2021.10.13 |
[Chapter 4] Variability 변산성 (0) | 2021.10.13 |
[Chapter 3] Central tendency (0) | 2021.10.13 |
[Chapter 2] Frequency Distributions (1) | 2021.10.12 |